Download Advances in Cancer Research [Vol 107] G. Vande Woude, G. Klein (AP, 2010) WW PDF

TitleAdvances in Cancer Research [Vol 107] G. Vande Woude, G. Klein (AP, 2010) WW
File Size3.2 MB
Total Pages245
Table of Contents
                            Advances in Cancer Research
Copyright Page
Chapter 1: Breaking Tolerance in a Mouse Model of Multiple Myeloma by Chemoimmunotherapy
	I. Introduction
	II. Increased Tregs in Mouse Models of MM
		A. Changes in Thymus Structure and Composition
		B. Increased Frequency of Treg Development in the Thymus of MM-Bearing Mice
		C. Adoptive Transfer of Thymocytes from 5T2MM-Diseased Mice Affects the Severity of MM Manifestations in 5T2MM-Injected Mice
	III. Treg Depletion by CYC Improves Antitumor Immunity
		A. Effects of a Single Low- and High-Dose CYC on 5T2MM Progression
		B. Cellular Component of the Immune System in MM
		C. CYC Effects on Molecules Essential for the Survival and Function of Tregs
		D. Adoptive Transfer of Tregs Shortly After Administering CYC to 5T2MM-Bearing Mice
		E. The Effect of CYC on NKT Cells and DCs
		F. A
Window of Opportunity
	IV. Optimal Time Schedules of CYC Treatment Affecting MM Progression
		A. The Clinical Effect of a Single Injection Versus Repeated Injections of Low-Dose CYC at Different Time Intervals
		B. Prolonged Maintenance of Treg Depletion
		C. Residual Tumor Cells
	V. Concluding Remarks
Chapter 2: Obesity, Cholesterol, and Clear-Cell Renal Cell Carcinoma (RCC)
	I. Obesity, Cholesterol, and RCC
	II. Mechanistic Factors Linking Obesity and Lipid Deregulation to RCC
		A. The Role of Leptin and Adiponectin
		B. Regulation of Lipid Biosynthesis—Role of SREBPs
		C. The Clear-Cell Phenotype in RCC
		D. VHL—The “Gate-Keeper” Gene in RCC
	III. Hereditary RCC Genes Affecting Lipid and Protein Biosynthetic Pathways
		A. Birt-Hogg-Dube´/Folliculin
		B. TRC8/RNF139
	IV. Concluding Remarks
Chapter 3: Regulatory T Cells in Cancer
	I. Introduction
		A. Discovery and Fall
		B. Renaissance Through Steady Characterization
	II. Regulatory T Cell Subsets
		A. Naturally Occurring CD4+ Regulatory T cells
		B. Induced (Adaptive) CD4+ Regulatory T Cells
		C. Naturally Occurring and Induced CD8+ Regulatory T Cells
	III. Mechanisms Mediating the Suppressive Function
	IV. Regulatory T Cells in Cancer
		A. Regulatory T Cells in Solid Malignancies
		B. Regulatory T Cells in Hematologic Malignancies
		C. Regulatory T Cells as Biomarkers
	V. Accumulation of Regulatory T cells
		A. Compartmental Redistribution
		B. Expansion
		C. De Novo Generation
		D. Preferential Survival
	VI. Antigen Specificity of Tregs in Cancer
	VII. Cancer Vaccines and Regulatory T Cells
	VIII. Targeting Regulatory T Cells in Cancer Therapy
		A. Depletion of Regulatory T Cells
		B. Targeting Function of Regulatory T Cells
		C. Disrupting Intratumoral Homing of Regulatory T Cells
		D. Modulation of Regulatory T Cell Proliferation/Conversion
		E. Targeting the Antioxidative Capacity of Regulatory T Cells
	IX. Concluding Remarks
Chapter 4: Role of EBERs in the Pathogenesis of EBV Infection
	I. Introduction
	II. Structure of EBERs
	III. Transcriptional Regulation and Expression of EBERs
	IV. Localization of EBERs and Their Interaction with Cellular Proteins
	V. Role of EBERs in Oncogenesis
	VI. Modulation of Innate Immune Signaling by EBERs and Its Contribution to EBV-Mediated Pathogenesis
Chapter 5: Androgen Regulation of Gene Expression
	I. Introduction
	II. Novel Androgen-Regulated Genes (ARGs)
		A. Cell Proliferation and Survival
		B. Lipid and Steroid Metabolism
		C. TMPRSS2:ERG Fusions
		D. MicroRNAs
		E. Miscellaneous
	III. Novel Discoveries Pertaining to Androgen Receptor
		A. Modulation of Androgen Receptor Expression
		B. Regulation of Androgen Receptor Activity
	IV. Conclusions
Chapter 6: MYC in Oncogenesis and as a Target for Cancer Therapies
	I. c-MYC, MYCN, and MYCL: Three Versions of a Multifunctional Protein
		A. Expression Patterns of the MYC Family Genes
		B. Several Levels of Regulation
	II. Networking Is Key with Max Acting as the Spider in the Web
		A. Protein Interaction and Downstream Effects
	III. MYC-Mediated Repression
	IV. Induction of Apoptosis
	V. Regulation of Stemness
	VI. Oncogenic Properties
	VII. No Transformation Without MYC?
	VIII. MYC-Associated Cancers and Their Treatment
		A. Breast Cancer
		B. Treatment of Breast Cancer
		C. Burkitt’s Lymphoma (BL)
		D. Treatment of BL
		E. Lung Cancer
		F. Treatment of Lung Cancer
		G. Medulloblastoma
		H. Treatment of Medulloblastoma
		I. Neuroblastoma
		J. Treatment of Neuroblastoma
		K. Rhabdomyosarcoma (RMS)
		L. Treatment of RMS
	IX. Novel Therapies
		A. Rational Design and Synthetic Modeling: Successful Examples
	X. Targeted Therapy: What Is in the Future for MYC?
		A. Substances Interfering with the MYC Pathway
		B. Transient Inactivation of MYC
	XI. Concluding Remarks
Color Plate
Document Text Contents
Page 2

Advances in


Volume 107

Page 122

Peng, G., Guo, Z., Kiniwa, Y., Voo, K. S., Peng, W., Fu, T., Wang, D. Y., Li, Y., Wang, H. Y., and

Wang, R. F. (2005). Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell func-
tion. Science 309, 1380–1384.

Penhale, W. J., Farmer, A., McKenna, R. P., and Irvine, W. J. (1973). Spontaneous thyroiditis in

thymectomized and irradiated Wistar rats. Clin. Exp. Immunol. 15, 225–236.
Penna, G., Vulcano, M., Roncari, A., Facchetti, F., Sozzani, S., and Adorini, L. (2002). Cutting

edge: differential chemokine production by myeloid and plasmacytoid dendritic cells.

J. Immunol. 169, 6673–6676.
Perrone, G., Ruffini, P. A., Catalano, V., Spino, C., Santini, D., Muretto, P., Spoto, C.,

Zingaretti, C., Sisti, V., Alessandroni, P., Giordani, P., Cicetti, A., et al. (2008). Intratumoural
FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected

gastric cancer. Eur. J. Cancer 44, 1875–1882.
Petersen, R. P., Campa, M. J., Sperlazza, J., Conlon, D., Joshi, M. B., Harpole, D. H., Jr., and

Patz, E. F., Jr. (2006). Tumor infiltrating Foxp3+ regulatory T-cells are associated with

recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866–2872.
Phan, G. Q., Yang, J. C., Sherry, R. M., Hwu, P., Topalian, S. L., Schwartzentruber, D. J.,

Restifo, N. P., Haworth, L. R., Seipp, C. A., Freezer, L. J., Morton, K. E., Mavroukakis, S. A.,
et al. (2003). Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-
associated antigen 4 blockade in patients with metastatic melanoma. Proc. Natl. Acad. Sci.
USA 100, 8372–8377.

Piccirillo, C. A., and Shevach, E. M. (2001). Cutting edge: control of CD8+ T cell activation by
CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140.

Prabhala, R. H., Neri, P., Bae, J. E., Tassone, P., Shammas, M. A., Allam, C. K., Daley, J. F.,

Chauhan, D., Blanchard, E., Thatte, H. S., Anderson, K. C., and Munshi, N. C. (2006).
Dysfunctional T regulatory cells in multiple myeloma. Blood 107, 301–304.

Pulko, V., Liu, X., Krco, C. J., Harris, K. J., Frigola, X., Kwon, E. D., and Dong, H. (2009).

TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude

of CD8 T cell responses to tumor vaccination. J. Immunol. 183, 3634–3641.
Qin, X. J., Shi, H. Z., Deng, J. M., Liang, Q. L., Jiang, J., and Ye, Z. J. (2009). CCL22 recruits

CD4-positive CD25-positive regulatory T cells into malignant pleural effusion. Clin. Cancer
Res. 15, 2231–2237.

Rech, A. J., and Vonderheide, R. H. (2009). Clinical use of anti-CD25 antibody daclizumab to
enhance immune responses to tumor antigen vaccination by targeting regulatory T cells.Ann.
N. Y. Acad. Sci. 1174, 99–106.

Ren, X., Ye, F., Jiang, Z., Chu, Y., Xiong, S., andWang, Y. (2007). Involvement of cellular death
in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell
Death Differ. 14, 2076–2084.

Rifa’i,M.,Kawamoto,Y.,Nakashima, I., andSuzuki,H. (2004).Essential roles ofCD8+CD122+

regulatory T cells in the maintenance of T cell homeostasis. J. Exp. Med. 200, 1123–1134.
Roncador, G., Brown, P. J., Maestre, L., Hue, S., Martinez-Torrecuadrada, J. L., Ling, K. L.,

Pratap, S., Toms, C., Fox, B. C., Cerundolo, V., Powrie, F., and Banham, A. H. (2005).

Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the

single-cell level. Eur. J. Immunol. 35, 1681–1691.
Roncarolo, M. G., and Gregori, S. (2008). Is FOXP3 a bona fide marker for human regulatory T

cells? Eur. J. Immunol. 38, 925–927.
Roncarolo, M. G., Gregori, S., Battaglia, M., Bacchetta, R., Fleischhauer, K., and

Levings, M. K. (2006). Interleukin-10-secreting type 1 regulatory T cells in rodents and
humans. Immunol. Rev. 212, 28–50.

Sakaguchi, S. (2001). Policing the regulators. Nat. Immunol. 2, 283–284.
Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance

and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562.

Regulatory T Cells in Cancer 111

Page 123

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-

tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25).
Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.

J. Immunol. 155, 1151–1164.
Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono,M. (2008). Regulatory T cells and immune

tolerance. Cell 133, 775–787.
Salama, P., Phillips, M., Grieu, F., Morris, M., Zeps, N., Joseph, D., Platell, C., and Iacopetta, B.

(2009). Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in

colorectal cancer. J. Clin. Oncol. 27, 186–192.
Sasada, T., Kimura, M., Yoshida, Y., Kanai, M., and Takabayashi, A. (2003). CD4+CD25+

regulatory T cells in patients with gastrointestinal malignancies: possible involvement of

regulatory T cells in disease progression. Cancer 98, 1089–1099.
Sato, E., Olson, S. H., Ahn, J., Bundy, B., Nishikawa, H., Qian, F., Jungbluth, A. A., Frosina, D.,

Gnjatic, S., Ambrosone, C., Kepner, J., Odunsi, T., et al. (2005). Intraepithelial CD8+
tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with

favorable prognosis in ovarian cancer. Proc. Natl. Acad. Sci. USA 102, 18538–18543.
Schaefer, C., Kim, G. G., Albers, A., Hoermann, K., Myers, E. N., and Whiteside, T. L. (2005).

Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients

with head and neck cancer. Br. J. Cancer 92, 913–920.
Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A.,

Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., Mantovani, A., Melillo, G., et al.
(2003). Regulation of the chemokine receptor CXCR4 by hypoxia. J. Exp. Med. 198,

Schmielau, J., and Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen
peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer

patients. Cancer Res. 61, 4756–4760.
Seddiki, N., Santner-Nanan, B., Martinson, J., Zaunders, J., Sasson, S., Landay, A.,

Solomon, M., Selby, W., Alexander, S. I., Nanan, R., Kelleher, A., and Fazekas de St
Groth, B. (2006). Expression of interleukin (IL)-2 and IL-7 receptors discriminates between

human regulatory and activated T cells. J. Exp. Med. 203, 1693–1700.
Seo, N., Hayakawa, S., Takigawa, M., and Tokura, Y. (2001). Interleukin-10 expressed at early

tumour sites induces subsequent generation of CD4(+) T-regulatory cells and systemic
collapse of antitumour immunity. Immunology 103, 449–457.

Setoguchi, R., Hori, S., Takahashi, T., and Sakaguchi, S. (2005). Homeostatic maintenance of

natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of
autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735.

Sharma, S., Yang, S. C., Zhu, L., Reckamp, K., Gardner, B., Baratelli, F., Huang, M.,

Batra, R. K., and Dubinett, S. M. (2005). Tumor cyclooxygenase-2/prostaglandin E2-depen-

dent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung
cancer. Cancer Res. 65, 5211–5220.

Shevach, E. M. (2004). Fatal attraction: tumors beckon regulatory T cells. Nat. Med. 10,

Shimizu, J., Yamazaki, S., and Sakaguchi, S. (1999). Induction of tumor immunity by removing
CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity.

J. Immunol. 163, 5211–5218.
Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y., and Sakaguchi, S. (2002). Stimulation of

CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance.Nat.
Immunol. 3, 135–142.

Simpson, E. (2008). Special regulatory T-cell review: Regulation of immune responses–examin-

ing the role of T cells. Immunology 123, 13–16.

112 Dimitrios Mougiakakos et al.

Page 244


Type I IFNs induced by RIG-I activation

RNA helicase domain

Inflammatory cytokines






Type I IFNs



EBV-infected BL cells

Resistance to apoptosis

Autocrine growth of BL



Transcription factors



Fig. 3, Dai Iwakiri and Kenzo Takada (See Page 129 of this volume.)

Page 245


EBV-infected lymphocytes

DCs, EBV-infected T or NK cells, etc.




Activation of innate immunity
Activation of EBV-infected T or NK cells

Pathogenesis of active EBV infectious diseases

Type I







Fig. 4, Dai Iwakiri and Kenzo Takada (See Page 130 of this volume.)

Similer Documents