Download Optimum reference signal reconstruction for DVB-T passive radars PDF

TitleOptimum reference signal reconstruction for DVB-T passive radars
LanguageEnglish
File Size19.2 MB
Total Pages145
Table of Contents
                            Abstract
Acknowledgements
Publications
List of Figures
List of Tables
Abbreviations
Symbols
1 General introduction
	1.1 Overview
	1.2 Motivations
	1.3 Objectives and contributions
		1.3.1 Objectives
		1.3.2 Original contributions
	1.4 Thesis outline
2 Bistatic passive coherent location radars
	2.1 Introduction
	2.2 Bistatic radars
		2.2.1 Bistatic radar systems
		2.2.2 Bistatic radar geometry
		2.2.3 Bistatic radar range
		2.2.4 Bistatic radar Doppler
	2.3 Bistatic PCL radars
		2.3.1 Received signal model
		2.3.2 Cross-correlation detection
		2.3.3 Review of illumination sources for PCL radars
	2.4 Conclusion
3 DVB-T signal as an illumination source for PCL radars
	3.1 Introduction
	3.2 DVB-T signal modulation
		3.2.1 OFDM modulation
		3.2.2 DVB-T signal Structure
			3.2.2.1 Data subcarriers
			3.2.2.2 Pilot subcarriers
			3.2.2.3 TPS subcarriers
		3.2.3 Practical implementation
	3.3 DVB-T signal demodulation
		3.3.1 Signal synchronization
			3.3.1.1 Fine time and fractional frequency synchronization
			3.3.1.2 Integer frequency synchronization
			3.3.1.3 Scattered pilot pattern estimation
		3.3.2 Propagation channel estimation
			3.3.2.1 LS channel estimation
			3.3.2.2 MMSE channel estimation
			3.3.2.3 SVD channel estimation
		3.3.3 Coded symbol estimation
		3.3.4 Symbol error rate
	3.4 DVB-T signal characteristics
		3.4.1 Statistical distribution
		3.4.2 Ambiguity function
	3.5 Conclusion
4 Target detection for DVB-T based PCL radars with a noisy reference signal
	4.1 Introduction
	4.2 Impact of the reference signal noise
		4.2.1 Matched filter and cross-correlation detector
		4.2.2 Qualitative assessment
		4.2.3 Quantitative assessment
	4.3 Reference signal reconstruction
		4.3.1 Principle
		4.3.2 Statistical analysis
		4.3.3 Numerical results
		4.3.4 Limitations
	4.4 Detection employing a pilot signal
		4.4.1 Principle
		4.4.2 Numerical results
	4.5 Optimum reference signal reconstruction
		4.5.1 Optimum filter design
		4.5.2 Results
			4.5.2.1 Noise-floor reduction
			4.5.2.2 Real-data results
			4.5.2.3 Detection probability improvement
	4.6 Conclusion
5 Static clutter suppression methods
	5.1 Introduction
	5.2 Static clutter impact
		5.2.1 Signal model
		5.2.2 Dynamic range and noise-floor level
		5.2.3 Sidelobe masking effect
	5.3 Adaptive methods
		5.3.1 Principle
		5.3.2 Impact of the reference signal noise
		5.3.3 Impact of the reference signal reconstruction
		5.3.4 Limitations
	5.4 Sequential methods
		5.4.1 Principle
		5.4.2 Extensive cancellation algorithm (ECA)
		5.4.3 Limitations
	5.5 Static clutter suppression in the frequency domain
		5.5.1 Principle
			5.5.1.1 Extensive cancellation algorithm by carriers (ECA-C)
			5.5.1.2 Channel estimation for static clutter suppression
		5.5.2 Improved channel estimation
		5.5.3 Comparison
	5.6 Conclusion
6 DVB-T PCL radars with a single-receiver
	6.1 Introduction
	6.2 Signal model
	6.3 Signal processing scheme
		6.3.1 Signal conditioning
		6.3.2 Propagation channel estimation
		6.3.3 Reference signal recovery
		6.3.4 Static clutter suppression
	6.4 Performance evaluation: simulation results
	6.5 Performance evaluation: real-data
		6.5.1 Measurement campaign set-up
		6.5.2 Automatic Dependent Surveillance-Broadcast
		6.5.3 Comparison results
		6.5.4 Performance results
			6.5.4.1 Exploiting one DVB-T transmitter
			6.5.4.2 Exploiting two DVB-T transmitters
	6.6 Conclusion
7 Conclusions and future work
	7.1 Conclusions
	7.2 Future work
		7.2.1 Improving the proposed static clutter suppression method
		7.2.2 Multistatic PCL radar
		7.2.3 Exploiting other illumination sources
                        

Similer Documents