Title REACTION RATES Catalysis Chemical Reactions Reaction Rate Activation Energy Chemical Reactor 2.4 MB 91
```                            Slide 1
Slide 2
Slide 3
Slide 4
Slide 5
Slide 6
Slide 7
Slide 8
Slide 9
Slide 10
Slide 11
Slide 12
Slide 13
Slide 14
Slide 15
Slide 16
Slide 17
Slide 18
Slide 19
Slide 20
Slide 21
Slide 22
Slide 23
Slide 24
Slide 25
Slide 26
Slide 27
Slide 28
Slide 29
Slide 30
Slide 31
Slide 32
Slide 33
Slide 34
Slide 35
Slide 36
Slide 37
Slide 38
Slide 39
Slide 40
Slide 41
Slide 42
Slide 43
Slide 44
Slide 45
Slide 46
Slide 47
Slide 48
Slide 49
Slide 50
Slide 51
Slide 52
Slide 53
Slide 54
Slide 55
Slide 56
Slide 57
Slide 58
Slide 59
Slide 60
Slide 61
Slide 62
Slide 63
Slide 64
Slide 65
Slide 66
Slide 67
Slide 68
Slide 69
Slide 70
Slide 71
Slide 72
Slide 73
Slide 74
Slide 75
Slide 76
Slide 77
Slide 78
Slide 79
Slide 80
Slide 81
Slide 82
Slide 83
Slide 84
Slide 85
Slide 86
Slide 87
Slide 88
Slide 89
Slide 90
Slide 91
```
##### Document Text Contents
Page 1

Chemical kinetics &
Reactor Design

Course Code: Ch. E-847
Credit Hours: 3-0
Course Instructor: Dr. Erum Pervaiz

Page 45

Arrhenius Equation

• Reaction rate increases with
temperature because:

–molecules have more kinetic energy
–more collisions occur
–greater number of collisions occur with

enough energy to “get over the hill”
•i.e. with energy greater than or equal to Ea

Page 46

Arrhenius Equation
The Arrhenius Equation relates the value of the rate
constant to Ea and the temperature:

k = Ae
where k = rate constant
Ea = activation energy

R = gas constant (8.314 J/mol. K)
T = temperature in Kelvin
A = frequency factor (a constant)
A is related to the frequency of collisions and the probability that the collisions are
oriented favorably for reaction.

-Ea/RT

Page 90

Packed Bed Reactor
Mole Balance

PBR

The integral form to find the catalyst weight is:



W 
dFA

r AFA 0
FA



FA0 FA  r AdW 
dNA

dt

Page 91

Reactor Mole Balance
Summary